The complete factorization of $2^{132}+1$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P3-factorization of complete bipartite symmetric digraphs

In path factorization, H. Wang [1] gives the necessary and sufficient conditions for the existence of P_k-factorization of a complete bipartite graph for k, an even integer. Further, Beiling Du [2] extended the work of H. Wang, and studied the P_2k-factorization of complete bipartite multigraph. For odd value of k the work on factorization was done by a number of researchers. P_3-factorization ...

متن کامل

P 9 - Factorization of Complete Bipartite Graph

Pk -factorization of a complete bipartite graph for k, an even integer was studied by H. Wang [1]. Further, Beiling Du [2] extended the work of H.Wang, and studied the P2k-factorization of complete bipartite multigraph. For odd value of k the work on factorization was done by a number of researchers[3,4,5]. P3-factorization of complete bipartite graph was studied by K.Ushio [3]. P5-factorizatio...

متن کامل

K1, pq-factorization of complete bipartite graphs

Let Km,n be a complete bipartite graph with two partite sets having m and n vertices, respectively. A K1,k-factorization of Km,n is a set of edge-disjoint K1,k-factors of Km,n which partition the set of edges of Km,n. When k is a prime number p, Wang [Discrete Math. 126 (1994)] investigated the K1,p-factorization of Km,n and gave a sufficient condition for such a factorization to exist. Du [Dis...

متن کامل

P2k-factorization of complete bipartite multigraphs

We show that a necessary and sufficient condition for the existence of a P2k-factorization of the complete bipartitemultigraph )"Km,n is m = n == 0 (mod k(2k l)/d), where d = gcd()", 2k 1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1960

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1960-0109134-5